目的 牛蒡根中多糖的提取工艺优化及含量预测。方法 牛蒡根中多糖和葡萄糖标准品的紫外可见光谱和多糖含量数据结合R语言进行偏最小二乘法(partical least squares,PLS)建模,并进行定性和定量分析;采用响应面法优化牛蒡根多糖的提取工艺。结果 模型拟合结果表明,散点集中分布在主对角线上故最终模型的拟合效果较好,偏最小二乘法-分光光度法可用于多糖含量的快速预测;响应面法优化的最佳提取条件为提取时间55.45 min、乙醇体积分数50.78%、料液比1∶40.31;在此条件下,牛蒡根多糖的提取率为10.33%。结论 建立了预测牛蒡根多糖含量的偏最小二乘-光度法,采用响应面法优化了牛蒡根多糖的提取工艺,为提高牛蒡根资源的综合利用提供依据。
Abstract
OBJECTIVE To optimize the extraction process of polysaccharide from burdock root and predict the content. METHODS The polysaccharide content data of polysaccharide in burdock root and UV-visible spectra of glucose standard were modeled by partial least squares(PLS) combined with R language. Meanwhile, qualitative and quantitative analysis was performed. The extraction process of polysaccharide from burdock root was optimized by response surface methodology. RESULTS The fitting results of the model showed that the scattered points were concentrated on the main diagonal, indicating that the model fitted well. The content of polysaccharide was quickly predicted by partial least squares-spectrophotometry. The optimum extraction conditions optimized by response surface methodology were as follows: extraction time 55.45 min, ethanol volume fraction 50.78%, and the solid-liquid ratio 1∶40.31. Under these conditions, the optimum yield of polysaccharides was 10.33%. CONCLUSION Partial least squares-spectrophotometry was established to predict the content of polysaccharide from burdock root, and the extraction process of polysaccharide from burdock root was optimized by response surface method, which provided reference and created a theoretical foundation for improving the comprehensive utilization of resources of burdock root.
关键词
光谱法 /
偏最小二乘法 /
牛蒡根 /
多糖 /
响应面法 /
提取工艺
{{custom_keyword}} /
Key words
spectroscopy /
partial least square /
burdock root /
polysaccharide /
response surface methodology /
extraction process
{{custom_keyword}} /
中图分类号:
R284
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GAO H, LIU W W, JIANG X W, et al. Chemical constituents from roots of Arctium lappa[J]. Chin Tradit Herb Drugs (中草药), 2020, 51(4): 912-917.
[2] RAKESH J, NIKOLAI K. Identification and characterization of five new classes of chlorogenic acids in burdock(Arctium lappa L.) roots by liquid chromatography/ tandem mass spectrometry[J]. Food Funct, 2011, 2(1): 63-65.
[3] REBAI O, BELKHIR M, FATTOUCH S, et al. Phytochemicals from mulberry extract(Morus sp.): Antioxidant and neuroprotective potentials[J]. J Appl Pharm Sci, 2017, 7(1): 217-221.
[4] JIANG Y X,TIAN H C,ZHANG J Y, et al. Pharmacokinetics of arctigenin nanoemulsion in rats[J]. Chin Pharm J (中国药学杂志), 2014, 49(8):679-682.
[5] LIU C L. Pharmacognostics of the roots, stems and leaves of burdock planted in Tibet and Qiang area of Sichuan[D].Chengdu:Southwest Minzu University,2018.
[6] LIU J M. Extraction and structural characteristics of polysaccharides from burdock root[D]. Nanchang: Nanchang University, 2019.
[7] XIAO Y C,WEI L X,YANG H X, et al. Quality control of traditional Tibetan medicine swertia chirayita[J]. Chin Pharm J(中国药学杂志), 2010, 45(4):255-258.
[8] LI J, YANG Y R, WANG Q F, et al. Content determination of total flavones and polysaccharides in Fangshu Qingre mixture by UV-vis spectrophotometry[J]. J Pharm Pract(药学实践杂志),2020,38(1):63-66.
[9] ZENG T, ZHOU F, TANG Y R, et al. Content determination of polysaccharides in Polygonatum cyrtonema Hua by ultraviolet-visible spectrophotometry[J]. Hunan J Tradit Chin Med (湖南中医杂志),2018, 34(9):167-169.
[10] LI Y, ZHANG J, LIU F, et al. Prediction of total polysaccharides content in Panax notoginseng using FTIR combined with SVR[J]. Spectrosc Spect Anal (光谱学与光谱分析), 2018, 38(6):1696-1699.
[11] WANG H W, WU Z B, MENG H. Linear and Nonlinear Methods of Partial Least Squares Regression(偏最小二乘回归的线性与非线性方法)[M]. Beijing:National Defense Industry Press, 2006:196-207.
[12] QI C, FANG Q L. Partial least squares modelling with R software and empirical analysis[J]. Math Theory Appl(数学理论与应用), 2013, 33(2):103-110.
[13] CHANG J, TANG Y L, LIU Z H, et al. Study on IR spectral estimated model of ganoderma lucidum polysaccharide′s contents[J]. Chin J Spectrosc Lab (光谱实验室), 2010, 27(2):677-680.
[14] DING B Y,CHEN W C, ZHANG F Y, et al. Establishment of near infrared spectral model for the prediction of the content of lentinan using wavelength selection SCARS and partial least square analysis[J]. Nat Prod Res Dev(天然产物研究与开发), 2010, 57(29):125-128.
[15] LI J, HOU S Z, WANG J Y, et al. Optimization of extraction technology for polysaccharide from roots of arctium lappa by response surface methodology[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2012, 18(11):21-23.
[16] XU R B, GAO Y Y, ZHOU S X, et al. Extraction and bioactivities of water-soluble polysaccharides from ethanol-soaked roots of burdock(Arctium lappa L.)[J]. Food Sci (食品科学), 2013, 34(18):82-86.
[17] HOU Y H, YANG J Y, YANG X X, et al. Optimization of extraction process of polysaccharides from ganoderma spore powder and drug residue by response surface methodology[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2020, 31(1):199-202.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(21564015)
{{custom_fund}}